
Efficient one-way quantum computations for quantum error correction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 295301

(http://iopscience.iop.org/1751-8121/42/29/295301)

Download details:

IP Address: 171.66.16.155

The article was downloaded on 03/06/2010 at 07:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/29
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 295301 (10pp) doi:10.1088/1751-8113/42/29/295301

Efficient one-way quantum computations for quantum
error correction

Wei Huang1 and Zhaohui Wei2

1 Department of Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, MI 48109, USA
2 State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, People’s Republic of China

E-mail: weihuang@eecs.umich.edu

Received 4 August 2008, in final form 7 May 2009
Published 30 June 2009
Online at stacks.iop.org/JPhysA/42/295301

Abstract
We show how to explicitly construct an O(nd) size and constant quantum depth
circuit which encodes any given n-qubit stabilizer code with d generators. Our
construction is derived using the graphic description for stabilizer codes and
the one-way quantum computation model. Our result demonstrates how to use
cluster states as scalable resources for many multi-qubit entangled states and
how to use the one-way quantum computation model to improve the design of
quantum algorithms.

PACS numbers: 03.67.−a, 03.67.Lx, 03.67.Pp

1. Introduction

The one-way quantum computation (1WQC) model [1–3], due to its simplicity, universality and
parallelism, is widely considered as a very promising scheme for the experimental development
of a quantum computer [4–10].

The 1WQC model starts with a highly entangled cluster state and performs quantum
computing simply by a sequence of adaptive single-qubit measurements and post-measurement
local corrections. Thus the whole computation is separated into four parts: (1) preparing cluster
states, (2) performing single-qubit measurements, (3) classically processing measurement
outcomes and (4) performing post-measurement local unitary corrections.

Such a simple model has been proved to be universal for quantum computation since any
quantum circuit can be efficiently simulated on it. Moreover, by translating normal quantum
circuits into 1WQC-compatible circuits, it is possible to reduce circuit depth and increase
parallelism, which is critical to overcome the quantum decoherence problem [11, 12].

In this paper, we reproduce the previous encoding procedure for quantum error correction
[13] under the one-way quantum computation model. Using only O(nd) single-bit operations
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and a small number of two-bit measurements, we encode any given n-qubit stabilizer code
with d generators. Furthermore, we will show that the depth of our construction is constant.
Our construction is derived using the graphic description for stabilizer codes.

This paper is organized as follows: in section 2, we review the connections between
graph states and stabilizer codes. In section 3, we produce an O(nd) size and constant-depth
1WQC-compatible circuit for the encoding and decoding procedure of arbitrary graph codes.

2. Preliminaries

In this section, let us recall some basic notions concerning this paper. More details can be
reviewed in [14, 15].

2.1. Stabilizer codes, graph codes and graph states

The Pauli group Pn on n qubits is defined to consist of n-fold tensor products of the Pauli
matrices {I,X, Y,Z}

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 1

)
with multiplicative factors {±1,±i}.

The Clifford group Cn is defined as the normalizer of the Pauli group Pn,

Cn = {U ∈ SU(2n) | ∀P ∈ Pn, UPU † ∈ Pn}.
The local Clifford group LCn = C⊗n

1 is a subgroup of Cn which only consists of the tensor
products of local unitary operations. The Clifford group Cn can be generated, up to a global
phase factor, by the Hadamard gate H, the phase gate S and the CNOT gate, while the local
Clifford group LCn can be generated by H and S only. There are only 24 elements in LC1, up
to a global phase.

Stabilizer group Sn is an Abelian subgroup of Pauli group Pn without −I . Any Sn is a
stabilizer for a non-trivial vector space, which can be defined as the codespace of a stabilizer
code. The code words of the Stabilizer code form the +1-eigenspace of the all the operations
in Sn.

An n-qubit Stabilizer code with d generators can encode an (n − d)-qubit state into an
n-qubit state. The stabilizer group Sn corresponding to the stabilizer code can be generated by
d independent elements g1, . . . , gd . Other elements in Sn can be represented as products of
g1, . . . , gd . Thus we can use g1, . . . , gd to describe a stabilizer code. We will use the binary
framework of stabilizer formalism to represent elements in the stabilizer group efficiently.

Define a homomorphic map from P1 to Z
2
2 as the following:

I → 00, X → 10, Y → 11, Z → 01.

After mapping, an element of Pauli group P = P1 ⊗ P1 ⊗ · · · PN can be described by a
binary vector[̂x |̂z], where x̂ is the vector consisting of the first bits of P1, . . . , Pn while ẑ is the
vector consisting of the second bits. Therefore an n-qubit stabilizer code C with d generators
g1, . . . , gd can be described by a 2n × d generator matrix: [X̂|Ẑ] where both X̂ and Ẑ are
n × d binary matrices.

An n-qubit stabilizer state |ψ〉 is an n-qubit stabilizer code with exactly n generators.
In this case, the dimension of the code space is one. |ψ〉 is the only vector stabilized by n
generators, up to a global phase. The stabilizer of |ψ〉 can be described by a 2n × n generator
matrix. A graph state |G〉 is a stabilizer state with graphical generator matrix [X̂|Ẑ] = [I |G],
where I is the identity matrix and G is the adjacency matrix of the underlying graph of the graph
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state. Suppose that an n-qubit graph code with d generators is generated by the generator matrix
[X̂1|Ẑ1] = [I, R|A + RCT , C], then it is closely related to the graph state |G〉 stabilized by
the generator matrix [X̂2|Ẑ2] = [

I 0
0 I

∣∣∣ A C
CT 0

]
. The adjacency matrix of the underlying graph is

G = (
A C
CT 0

)
.

An important result [16–18] is that any stabilizer state can be transformed into a graph
state with generator matrix [X̂|Ẑ] = [I |G] by a local unitary operation U ∈ LCn. Similarly,
any n qubits stabilizer code with d generators can be transformed into a graph code with
generator matrix [X̂1|Ẑ1] = [I, R|A + RCT , C].

2.2. Relation between graph states and graph codes

In this subsection, we give an example to demonstrate how to generate graph codes based
on graph state. According to the relationship between stabilizer codes and graph codes, the
basic idea can be generalized to find the relationship between stabilizer codes and graph states.
Suppose we have a graph state |G〉 with generators {g1, g2, g3, g4, g5, g6} which is stabilized
by the following generator matrix: [X̂2|Ẑ2] = [

I 0
0 I

∣∣∣ A C
CT 0

]
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1 1 0
1 0 1 0 0 0
0 1 0 1 0 1
1 0 1 0 1 0
1 0 0 1 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and a six-qubit graph code with four generators {g′
1, g

′
2, g

′
3, g

′
4} which is stabilized by the

following generator matrix: [X̂1|Ẑ1] = [I, R|A + RCT , C]⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1
0 0
1 0
1 0

∣∣∣∣∣∣∣∣
0 1 1 1 1 0
1 0 1 0 0 0
1 1 0 0 0 1
0 0 1 1 1 0

⎞
⎟⎟⎠ ,

where

A =

⎛
⎜⎜⎝

0 1 0 1
1 0 1 0
1 1 0 0
0 0 1 1

⎞
⎟⎟⎠ , R =

⎛
⎜⎜⎝

0 1
0 0
1 0
1 0

⎞
⎟⎟⎠ , C =

⎛
⎜⎜⎝

1 0
0 0
0 1
0 0

⎞
⎟⎟⎠ .

It is not hard to see the following equations relating the two sets of generators:

g′
1 = g1 · g6, g′

2 = g2, g′
3 = g3 · g5, g′

4 = g4 · g5.

Based on the above relation between the generators of the graph code and the graph state,
we can obtain the graphic representation of the graph code as shown in figure 1.

Let G′ denote the graph which includes G plus input nodes A and B. Let |G′〉 denote
the graph state corresponding to G′. Suppose the code words of the graph code are
{|00L〉, |01L〉, |10L〉, |11L〉}, then we have

|G′〉 = |0〉A|0〉B |00L〉 + |0〉A|1〉B |01L〉 + |1〉A|0〉B |10L〉 + |1〉A|1〉B |11L〉

3



J. Phys. A: Math. Theor. 42 (2009) 295301 W Huang and Z Wei

2 3

4 B

56A

1

Figure 1. Graphic representation of the graph code in subsection 2.2. Vertices A and B are input
nodes.

and

|00L〉 = |G〉
|01L〉 = Z3Z4Z5|G〉
|10L〉 = Z1Z6|G〉
|11L〉 = Z1Z3Z4Z5Z6|G〉

where Zi denotes local unitary Z on qubit i.
Fault-tolerant X and Z operations on the first and second qubits of the encoded state are

(XL)1 = Z1Z6, (XL)2 = Z3Z4Z6, (ZL)1 = g1 = X1Z2Z5 and (ZL)2 = g3 = X3Z2Z4Z6.
More details about graph states will be explained in the following section.

Remark. If we can construct the uniform encoded state
∑

x∈{0,1}k |x〉|xL〉, then we can encode
any given unknown k-qubit state |ψ〉 in a stabilizer code by quantum teleportation [15]. In
the following section, we focus on using cluster states to generate any graph state including
uniform encoded states for graph codes.

3. Construction of 1WQC-compatible circuit encoding graph codes

3.1. Preparation of graph states by definition

According to the section above, for the purpose of encoding, we have to prepare the graph
state we need. In this subsection, we focus on this topic. Firstly, let us recall the definition of
graph states. Actually, this definition itself is a method of creating graph states.

Let G = (V ,E) be a graph with n = |V | vertices and m = |E| edges, then graph state
|G〉 corresponding to the graph G is the following superposition over all basis states,

|G〉 =
∏
i<j

(i,j)∈E

Zij |+〉⊗n =
∑

x∈{0,1}n
(−1)q(x)|x〉.

Here Zij denotes the controlled phase gate between qubits i and j

Zij |+〉i |+〉j = |0〉i |+〉j + |1〉i |−〉j .
q(x) is a quadratic function related to the graph G

q(x) =
∑
i<j

(i,j)∈E

xixj .

4
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Figure 2. An example of a local complement operation on a graph.

We can verify that |G〉 is the stabilizer state with the graphical generator matrix
[X̂|Ẑ] = [I |G]. Thus we have the following procedure of preparing the graph state |G〉
by its natural definition:

• the qubit at each vertex v ∈ V has the initial state |0〉;
• apply the Hadamard gate on each qubit, so each qubit is now in the state |+〉;
• apply the controlled phase gate Zij to each edge (i, j) ∈ E.

Actually, cluster states and graph states are used so widely in quantum information
processing that their preparation becomes an important issue. Many efforts have been made
on this problem. On one hand, it has been shown that cluster states can be grown using a
‘divide-and-conquer’ approach [19–23]. In this approach, bigger cluster states are created by
iteratively connecting smaller clusters together.

On the other hand, another scheme for the preparation of cluster states is based on the
optical lattice of ultracold atoms [24, 25]. In this proposal, the cluster state can be prepared in
one step using a natural nearest-neighbor interaction. Though this is a theoretical proposal at
the present time because of the difficulties in experiments, it may be a promising and efficient
method of preparing cluster states in the future. In this situation, it seems necessary to propose
a general method for preparing arbitrary graph states from 2D cluster states. In the following,
we will give such a procedure. Firstly, let us recall some properties about graph states in the
following subsection.

3.2. Graphical rules of single-qubit Pauli measurements

We start by introducing the concept of local complement operations on the graphs and
describing some graphical rules of the operations on the graph states.

Letting G = (V ,E) be a graph and a ∈ V , the local complement operation λa on vertex
a is obtained by complementing the subgraph of G induced by the neighborhood of a and
leaving the rest of the graph unchanged. Figure 2 depicts an example for the local complement
operation.

The local complement operations are closely related to the graphical rules of some
quantum operations on the graph states.

Let [X]a, [Y ]a and [Z]a denote single-qubit Pauli measurements X, Y,Z on qubit a,

respectively. After each Pauli measurement, a graph state |G〉 will transform into another
graph state |G̃〉, up to a local Clifford unitary depending on the measurement outcome [26].
The graphical rules for Pauli measurements are the following:

• [Z]a: deletes vertex a and related edges from G, G̃ = G − a.
• [Y ]a: first applies local complement on vertex a, then deletes vertex a, G̃ = λa(G) − a.

5
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Figure 3. Two chains cross each other without sharing qubits.

• [X]a: chooses any of a’s neighbors b, applies local complement on vertex b, then
applies local complement on a, deletes vertex a and applies local complement on b
again, G̃ = λb(λa ◦ λb(G) − a).

In summary, two graph operations, local complement and vertex deletion, can be achieved
by single-qubit Pauli measurements and local Clifford operations. Based on the above simple
graphic rules, two more graph operations, crossing and contraction, can be implemented as
follows:

Lemma 3.1. (Crossing) Two chains crossing each other without sharing any qubit can be
simulated in the cluster state of the 2D lattice.

Proof. In this paper, all the operations are based on cluster states. That is to say, we do not
move any qubit during the whole process. As a consequence, we will find that sometimes we
need to construct two chains such that they cross each other without sharing any qubit (these
kinds of operations are important in section 3). This can be achieved as follows (see figure 3).

In the first step, we perform all Z measurements and correct the related byproduct local
unitaries. Then, we do all Y measurements except the central one and correct them. Finally,
we perform the Y measurement on the central qubit and correct it. In this way, all the qubits
denoted by circles in figure 3 will be deleted by measurements in the end. The result is a chain
from 1 to 2 and another chain from 3 to 4. The two chains cross each other without sharing
any qubit. �

Remark. One can use the rewrite rules of the measurement calculus [27], to reduce the running
time by postponing the local corrections till the end of 1WQC. However it is unnecessary
here since the running time of simulating chain crossing is already constant.

Lemma 3.2. (Contraction[28]) Let graph G(L-v-a-b-R) consist of subgraphs L and R and
three vertices v, a and b. Vertex a has two edges (a,v) and (a,b). Vertices v and b have
edges connected to the vertices in the subgraphs L and R, respectively. After applying X
measurements on vertices a and b, the graph state corresponding to graph G (L-v-a-b-R) will
change to the graph state corresponding to the graph G̃ (L-v-R).

6
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Figure 4. Contraction through a chain.

Proof. The lemma can be verified by applying the basic graphic rule about [x]a . The
contractions through a chain can be done simultaneously. For example in figure 4, if X
measurements are applied on qubits 5–8 at the same time, the graph will contract to the vertex
0, whether or not a Z operation on qubit 0 is needed for local correction depends on the sum
of measurement outcomes of qubits 6 and 8. Local Z corrections on qubits 1 and 2 depend on
the measurement outcome of the qubit 5. Local Z corrections on qubits 3, 4 and 9 depend on
the sum of measurement outcomes of qubits 5 and 7.

To understand why the contractions through a chain can be done simultaneously and how
local operations can be postponed to the end of the computing, we have to go through some
complicated calculations step-by-step carefully. A detailed proof of the lemma is included in
the appendix. �

3.3. Generating arbitrary graph states from the cluster states of the 2D lattice

In this subsection, we discuss how to generate arbitrary graph states from the cluster states of
the 2D lattice. We depict this result as the following theorem.

Theorem 3.1. Any graph state with the underlying graph G can be generated from an
O(n) × O(n) cluster state by local measurements and local unitaries in constant time.

Proof. Given a graph G = (V ,E) with n vertices v1, . . . , vn and m edges E1, . . . , Em, we
need to perform some crossings and contractions on a cluster state of the 2D lattice to generate
a graph state |G〉.

We need several auxiliary qubits. A 5 × 5 lattice is required for implementing crossings
whereas contractions between any two vertices with degree greater than 2 require degree 2
auxiliary qubits. However, we can introduce those auxiliary qubits by increasing the length
and width of the 2D lattice only by a constant value. Thus we ignore those auxiliary qubits
and only consider an n × n lattice. Besides, to avoid unnecessary complication and make
our proof clear, we use the example in figure 5 to illustrate our basic idea. The proof can be
generalized to any case directly and easily, thus this simplification is reasonable.

The whole procedure can be divided into three steps. In the first step, we perform Z
measurements on the qubit located at the intersection of the ith row and the j th column where
i < j and i, j ∈ {1, 2, . . . , n}. In the second step, we perform a crossing operation for any qubit
on the location (i, j) which satisfies i > j and (vi, vj ) /∈ E. In the final step, we contract
simultaneously through the columns 1, 2, . . . , n to the locations (1, 1), (2, 2), . . . , (n, n).
Then we obtain the target graph state. �

In fact, since we only need to generate the specific graph states related to the graph codes,
by carefully rearranging the protocol in theorem 3.1, it is not difficult to reduce the size of

7
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Figure 5. Generating arbitrary graph states from the cluster states of the 2D lattice.

the cluster state needed by our encoding method, to O(n) × O(d). For convenience, we
introduced the above one.

3.4. Construction of 1WQC encoding graph codes

Now we can turn to the main result of this paper, how to encode stabilizer codes for quantum
error correction. By combining these operations mentioned above together, we can realize the
encoding algorithm as follows.

Suppose we need to encode an unknown quantum state using an n-qubit stabilizer
code with d generators. Firstly, we determine the equivalent graph code and the graphic
representation of the graph code. Then we build a proper cluster state of the 2D lattice and
based on it generate the graph state corresponding to the graphic representation. Finally, we
teleport the unknown quantum state onto the graph state by measuring the unknown quantum
state and the input nodes of the graph state [15]. Then the remaining part of the graph state is
the target encoding state we want, up to some local unitary operations.

4. Discussion

According to the previous section, the whole computation which generates the graph state
related to any n-qubit graph code with d generators can be conducted on an O(n) × O(d)

lattice. Therefore the total number of quantum operations of the 1WQC is bounded by O(nd),
which is the length of the description of the generating matrix of the stabilizer code. Therefore,
both the size and the depth of our 1WQC are most likely optimal in the general case.

Note that our construction has a constant running time. Since qubit coherent time is
limited, improving the temporal overhead of the encoding procedure will be helpful for its
physical implementation.

Furthermore, it should be pointed out that in the procedure of preparing graph state based
on cluster states, most operations we need are single-qubit operation (except when teleportating
an unknown state, where a small amount of two-qubit measurements are involved). Usually, in
experiments the fidelity of one-qubit operations is very high. Thus, ignoring errors introduced
by one-qubit operations, our encoding procedure will be reasonable as long as the quality of
cluster states we use as foundation is good enough.

The decoding procedure can be done in a similar way to the encoding procedure, if one
can implement the quantum teleportation on an encoded state. For the error detecting and

8
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fault tolerant computation on the states encoded in the stabilizer codes, one can apply methods
in [14].

5. Conclusion

In this paper, we have shown how to use one-way quantum computation to implement an
encoding and decoding procedure for quantum error correction. We have constructed an
O(nd) size and constant-depth 1WQC-compatible circuit which encodes any given n-qubit
stabilizer code with d generators. The result demonstrates that the cluster states can be used
as the scalable resources for many multi-qubit entangled states and the one-way quantum
computation model can help to design better quantum algorithms than the traditional quantum
circuit model.
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Appendix

Proof of Lemma 3.2. At the beginning, the initial state |ψ〉 is the graph state |G〉
|ψ〉 = |G〉 = (|0〉 + ZvZb|1〉)a(|0〉 + ZR|1〉)b(|0〉 + ZL|1〉)v|GR〉|GL〉

= ((I + ZvZb)|+〉 + (I − ZvZb)|−〉)a(|0〉 + ZR|1〉)b(|0〉 + ZL|1〉)v|GR〉|GL〉.
Apply X measurements on qubit a, let x ∈ {0, 1} be the measurement result, the remaining

state of other qubits is

|ψ〉 = (I + (−1)xZvZb)(|0〉 + ZR|1〉)b(|0〉 + ZL|1〉)v|GR〉|GL〉
= ((I + (−1)xZv)|0〉 + (I − (−1)xZv)ZR|1〉)b(|0〉 + ZL|1〉)v|GR〉|GL〉
= ((I + (−1)xZv + ZR − (−1)xZvZR)|+〉 + (I + (−1)xZv − ZR + (−1)xZvZR)|−〉)b

× (|0〉 + ZL|1〉)v|GR〉|GL〉.
Then apply X measurements on qubit b, let y ∈ {0, 1} be the measurement result, let

Z0 = I and Z1 = Z, we have

|ψ〉 = (I + (−1)xZv + (−1)yZR − (−1)x+yZvZR)(|0〉 + ZL|1〉)v|GR〉|GL〉
= ((1 + (−1)x)I + (−1)y(1 − (−1)x)ZR)|0〉

+ ((1 − (−1)x)I + (−1)y(1 + (−1)x)ZR)ZL|1〉)|GR〉|GL〉
=

{
(|0〉 + (−1)yZRZL|1〉)v|GR〉|GL〉 if x = 0,

((−1)yZR|0〉 + ZL|1〉)v|GR〉|GL〉 if x = 1.

= Zy
vZx

R(|0〉 + ZRZL|1〉)v|GR〉|GL〉
= Zy

vZx
R|G̃〉. �

More generally, we consider the effect of graph contraction on the generalized graph state
Z

u0
L Zv0

v Z
w0
R Zx0

a Z
y0
b |G〉, where {u0, v0, w0, x0, y0} ∈ {0, 1}. In this case, we first apply some

9
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local Z operations on graph state |G〉, then apply X measurements on qubits a and b, denoted
as [X]a and [X]b . Suppose the measurement results are x and y, respectively. Applying the
Z operation before the X measurement [X] on a qubit does nothing but flip the measurement
outcome, therefore

|ψ〉 = [X]a[X]bZ
u0
L Zv0

v Z
w0
R Zx0

a Z
y0
b |G〉

= Z
u0
L Zv0

v Z
w0
R [X]aZ

x0
a [X]bZ

y0
b |G〉

= Z
u0
L Zv0+y0+y

v Z
w0+x0+x
R |G̃〉

local Z operations on a and b pass to R and v respectively after graph contraction.
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